skip to main content


Search for: All records

Creators/Authors contains: "Hu, Enyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An investigation of alternative lithium salts, lithium tetrafluoroborate (LiBF 4 ), lithium difluoro(oxalato)borate (LiDFOB) and lithium hexafluorophosphate (LiPF 6 ), in novel ester-based (methyl acetate/fluoroethylene carbonate- MA/FEC or methyl propionate/fluoroethylene carbonate- MP/FEC) electrolyte formulations has been conducted in LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM622)/graphite cells to improve low temperature cycling performance of lithium ion batteries at −20 °C. Improved low temperature performance was observed with all the lithium salts in MA/FEC electrolyte while comparable room temperature (25 °C) capacities were observed with LiPF 6 salt only. Detailed ex-situ analysis of surface films generated with LiBF 4 , LiDFOB and LiPF 6 in ester-based electrolytes reveals that the solid electrolyte interphase (SEI) is predominately composed of lithium salt decompaction products and addition of 10% FEC (by volume%) may not be sufficient at forming a protective SEI. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Layered transition metal oxides are appealing cathodes for sodium‐ion batteries due to their overall advantages in energy density and cost. But their stabilities are usually compromised by the complicated phase transition and the oxygen redox, particularly when operating at high voltages, leading to poor structural stability and substantial capacity loss. Here an integrated strategy combing the high‐entropy design with the superlattice‐stabilization to extend the cycle life and enhance the rate capability of layered cathodes is reported. It is shown that the as‐prepared high‐entropy Na2/3Li1/6Fe1/6Co1/6Ni1/6Mn1/3O2cathode enables a superlattice structure with Li/transition metal ordering and delivers excellent electrochemical performance that is not affected by the presence of phase transition and oxygen redox. It achieves a high reversible capacity (171.2 mAh g−1at 0.1 C), a high energy density (531 Wh kg−1), extended cycling stability (89.3% capacity retention at 1 C for 90 cycles and 63.7% capacity retention at 5 C after 300 cycles), and excellent fast‐charging capability (78 mAh g−1at 10 C). This strategy would inspire more rational designs that can be leveraged to improve the reliability of layered cathodes for secondary‐ion batteries.

     
    more » « less
  4. Abstract

    The practical application of lithium (Li) metal anode (LMA) is still hindered by non‐uniformity of solid electrolyte interphase (SEI), formation of “dead” Li, and continuous consumption of electrolyte although LMA has an ultrahigh theoretical specific capacity and a very low electrochemical redox potential. Herein, a facile protection strategy is reported for LMA using a double layer (DL) coating that consists of a polyethylene oxide (PEO)‐based bottom layer that is highly stable with LMA and promotes uniform ion flux, and a cross‐linked polymer‐based top layer that prevents solvation of PEO layer in electrolytes. Li deposited on DL‐coated Li (DL@Li) exhibits a smoother surface and much larger size than that deposited on bare Li. The LiF/Li2O enriched SEI layer generated by the salt decomposition on top of DL@Li further suppresses the side reactions between Li and electrolyte. Driven by the abovementioned advantageous features, the DL@Li||LiNi0.6Mn0.2Co0.2O2cells demonstrate capacity retention of 92.4% after 220 cycles at a current density of 2.1 mA cm–2(C/2 rate) and stability at a high charging current density of 6.9 mA cm–2(1.5 C rate). These results indicate that the DL protection is promising to overcome the rate limitation of LMAs and high energy‐density Li metal batteries.

     
    more » « less
  5. High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Single-crystalline Ni-rich cathode has a great potential to address the challenges present in its polycrystalline counterpart by reducing phase boundaries and materials surfaces. However, synthesis of high-performance single-crystalline Ni-rich cathode is very challenging, notwithstanding a fundamental linkage between overpotential, microstructure, and electrochemical behaviors in single-crystalline Ni-rich cathodes. We observe reversible planar gliding and microcracking along the (003) plane in a single-crystalline Ni-rich cathode. The reversible formation of microstructure defects is correlated with the localized stresses induced by a concentration gradient of Li atoms in the lattice, providing clues to mitigate particle fracture from synthesis modifications.

     
    more » « less
  6. Abstract

    The energy density of battery systems is limited largely by the electrochemical window of the electrolyte. Herein, the combined thermodynamic and kinetic effects of mechanically induced metastability are shown to greatly widen the operational voltage window of solid‐state batteries based on ceramic‐sulfide electrolytes. Solid electrolyte voltage stability up to 10 V is achieved with minimal degradation, far beyond the capability of organic liquid electrolytes. Furthermore, combined experiment, ab initio computation, and theoretical modeling identify the nature of mechanically constrained Li10GeP2S12decomposition both within the bulk and at interfaces with cathode materials at very high voltages. Previously unclear kinetic processes are identified that, when properly implemented, can potentially allow solid‐state full cells with remarkably high operational voltages.

     
    more » « less
  7. Abstract

    Manganese‐rich layered oxide materials hold great potential as low‐cost and high‐capacity cathodes for Na‐ion batteries. However, they usually form a P2 phase and suffer from fast capacity fade. In this work, an O3 phase sodium cathode has been developed out of a Li and Mn‐rich layered material by leveraging the creation of transition metal (TM) and oxygen vacancies and the electrochemical exchange of Na and Li. The Mn‐rich layered cathode material remains primarily O3 phase during sodiation/desodiation and can have a full sodiation capacity of ca. 220 mAh g−1. It delivers ca. 160 mAh g−1specific capacity between 2–3.8 V with >86 % retention over 250 cycles. The TM and oxygen vacancies pre‐formed in the sodiated material enables a reversible migration of TMs from the TM layer to the tetrahedral sites in the Na layer upon de‐sodiation and sodiation. The migration creates metastable states, leading to increased kinetic barrier that prohibits a complete O3‐P3 phase transition.

     
    more » « less